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ABSTRACT

The knowledge of thresholding and gradient at different tissudaoésr is of
paramount interest in image segmentation and other imaging methods and
applications. Most thresholding and gradient selection methods prinfaciys on
image histograms and therefore, fail to harness the infammgénerated by intensity
patterns in an image. We present a new thresholding and graghentization
method which accounts for spatial arrangement of intensities forming diftasgects
in an image. Specifically, we recognize object class unngytaa histogram-based
feature, and formulate an energy function based on its correlatidn imdge
gradients that characterizes the objects and shapes in a giage.iFinally, this
energy function is used to determine optimum thresholds and gradientarfous
tissue interfaces. The underlying theory behind the method ibjedts manifest
themselves with fuzzy boundaries in an acquired image and that, mbabpistic
sense; intensities with high class uncertainty are assoeutetiigh image gradients
generally indicating object/tissue interfaces. The new methodultsineously
determines optimum values for both thresholds and gradient parantetkiferant
object/tissue interfaces. The method has been applied on sevesad2ED medical
image data sets and it has successfully determined both threahdldgadients for
different tissue interfaces even when some of the thresholdérarst anpossible to
locate in their histograms. The accuracy and reproducibility oimitod has been
examined using 3D multi-row detector computed tomography imagesvof t
cadaveric ankles each scanned thrice with repositioning thenrspedetween two

scans.
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CHAPTER ONE

INTRODUCTION

1.1 Image Segmentation and Thresholding

Over the last few decades, multi-layered extraction of knowledgeedded in
two- and higher-dimensional images has remained a front linerchstpic [1-7]. In
particular availability of a wide spectrum of medical imagtaghniques [8] including
MR, ultrasound, CT, PET, and X- angrays have further intensified the image
processing needs for computerized extraction of knowledge from theeimage data
sets produced. Segmentation has remained a salient task in mgisgimaplications, in
particular, those involving object classification, geometry, shapeatmn analysis.
Some other imaging steps including interpolation, filtering and tragisn may also be
significantly improved with the priori knowledge of objects and shapes. With all these
reasons, defining objects in a precise and effective way becones fai any
computerized imaging applications, and this is usually referred as seggeentation.

Pal and Pal [9] reviewed various methods for gray-level imagenentation.
Despite major advances in image segmentation methods [10-15], ofedding
acceptable results, thresholding is undoubtedly one of the most populaensagon
approaches, because of its simplicity and relative robustnesdiyusgagray levels of
pixels belonging to the object are substantially different frbendray levels of those
belonging to the background, so by thresholding at proper threshoklguite easy and
effective to separate object from background. The output of threshagergtion is a

binary image whose one state will indicate the foreground objectssthpminted text, a
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legend, a target, defective part of a material, etc., while thegleomentary state will
correspond to the background. Depending on the application, the foreground can be
represented by gray-level 0, that is, black as for text, and tkgtoaind by the highest
luminance for the document paper, which is 255 in 8-bit imagesooversely the
foreground by white and the background by black. Various factors,asusbnstationary

and correlated noise, ambient illumination, busyness of gray levis whe object and

its background, inadequate contrast, and object size not commensithatbenwscene,
complicate the thresholding potation. Finally, the lack of objesagure to assess the
performance of various thresholding algorithms, and the difficulgxténsive testing in

a task-oriented environment, are other major handicaps [43].

1.2 Optimum and Automatic thresholding

Often, optimum thresholding along with gradient selection are hiddenepmesbl
in many advanced segmentation approaches, or, at least would hatg tavomation of
such methods. For example, the knowledge of average tissue intensdyvath the
gradient at different tissue interface should bring momentous impeavs in different
boundary-, region- and shape-based segmentation approaches.

Automatic selection of a robust and accurate threshold has rensattelenge
in image segmentation. Many methods for automatic thresholdtiselehave been
reported [16-35] over the past five decades. In late 80’s, Sahoo &6Rpublished a
survey of optimum thresholding methods while Lee et al. [17] repdnedesults of a
comparative study of thresholding methods. Glasbely [18] published thdsresgul
another comparative study involving eleven histogram-based threshalgjogthms.

Among the early works on automatic thresholding, Prewitt and Mendelson [19] ®ajges
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using the valleys of the histogram, while Doyle [20] advocatedlitbé&ee of the median.
Otsu [21] developed a thresholding method maximizing the betweenwdaance. Tsai
[24] proposed a choice of the threshold at which resulting binary imagesidentical

first three moments.

Later works on threshing have utilized entropy of the original anesholded
images to construct an optimization criterion. For example, Pun’s method §2bhimes
the upper bound of the posteriori entropy of the histogram. Wong and Sahoo's method
[26] selects the optimum threshold that maximizesahmsteriori entropy subject to
certain inequality constraints characterizing the uniformity stmape of the segmented
regions. Pal and Pal's method [27] utilized the joint probabilistrithution of the
neighboring pixels which they further modified28 with a new debnitof entropy.
Kapur et al. [29] proposed a thresholding method maximizing the semtraipies of the
segmented regions and a similar method was reported by AbuB8lpthit maximizes
the 2D entropy. The method by Brink [31] maximizes the sum oéniv®pies computed
from two autocorrelation functions of the thresholded image histogranand Lee's
method [32] minimizes relative cross entropy or Kullback-Leiklistance between the
original and thresholded images. Kitler and lllingworth33 developed eshbliding
method minimizing segmentation errors derived using an informationetiteapproach,
while Dunn et al.'s method [34] used a uniform error criterion. LeuntyLlam [35]
developed a method that maximizes segmented image information ddeisugy an
information-theoretic approach and demonstrated that their methbdttexr than the

methods based on minimum and uniform errors [33, 34].
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Although, Wong and Sahoo [26] and Pal and Pal [27, 28] incorporated some
spatial image information in their methods, others are modtgdram-based techniques.
One common shortcoming of a purely histogram-based approach isdbasinot utilize
the significant amount of information embedded in the spatial lmligiton of intensities
and in image morphology. Often, it is not possible for a human observezldéct a
threshold in an image just from its histogram without seeing tigenal image. On the
other hand, the image may contain clear partitions of differemicoloy tissue regions
and it may only be a trivial task to select the threshold ffeenmage. This observation
inspired us to develop a method that directly makes use of impresseated on the
image by different object/tissue interfaces. In our previous |86k we introduced the
idea of class-uncertainty and demonstrated its relation witHfanes of multiple objects
or tissue regions. The method captures the fuzziness caused hbygbturrthe ubiquitous
partial voluming effect introduced by an imaging device andzaslithis fuzziness in
optimum thresholding by relating it with class uncertainty. Cles=rtainty is byproduct
information of object classification and it's often ignored in the exinof computer
vision and imaging applications. In our previous work, it was demaigsitrthat high
class-uncertainty, commonly associated with intermediate ingensitues on the
histogram between two object classes, appear in the vicinity aftaiyjéissue interfaces
in an image. This observation provides a unique theory of relatingghasn based

information with image derived features.

1.3 Outline
Although, based on the above idea, an optimum threshold selection method was

developed in our previous work, it suffers from two limitations — (L)ad hoc rank-
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based approach was adopted for normalizing the image gradiemefeditich may shift
the fulcrum as the amount of edginess varies across images afallqd2p capture
varying intensity contrasts at different tissue interfaceseHwe solve these two major
problems by simultaneously optimizing the gradients and threshold. Theme¢vod
needs na priori assumption on image gradient values and yields the optimum image
gradients for different tissue interfaces along with the optimum thresholds.

In Chapter 2, we discuss the class uncertainty theory and howoinisined with
gradient optimization. In Chapter 3, we show in detail how we imgh¢rour method
and the experimental settings. In Chapter 4, we present the cptaiifi result of our

method, and the quantitative analysis consisting of both accuracy and reproducibility
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CHAPTER TWO

THEORY

In the context of thresholding or classification, we mostly ed@ut the class or
the region to which an image point is partitioned and, often, ignoire@ortant piece of
information related to the confidence level or uncertainty assaciatith the
classification; we will refer to it as class-uncertairfgr example, considering the object
and background intensity distribution illustrated in Figure. 1, a poiht @ther intensity
t; ort,will be classified as an object point. However, the class-waioéds in the two
cases are significantly different. In an original work, Sahd Udupa [36] derived a
measure of class-uncertainty in terms afpriori object and background intensity
distributions and the density function. Also, they demonstrated theaorelatass-
uncertainty and image-derived features. The following postulate propos#g] gojverns

the relation between class-uncertainty and image-derived features.

Postulate A. In an image with fuzzy boundaries, under optimum partitioning of object

classes, intensities with high class uncertainty appear around object boundaries.
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Background distribution

Object distribution

Threshold

Figure. 1 lllustration of the relation between thresholding and object clagsaimiye
values for a two class problem.

Although it is difficult to prove or disprove the postulate becaists nature, its
validity may be justified on real-life images. Let us considepraputed tomography (CT)
image of abdomen (see Figure. 2(a)) depicting several tisgiensewith different
intensity values. To illustrate the basic idea of the classriamtgy theory, let us
manually pick three thresholds on the intensity histogram of the@ge (see Figure.
2(b)) of which two are expected to separate meaningful tisgimnee(see Figure. 2(c,q))
while the other is intentionally selected not to represent a mgfahitissue region (see
Figure. 2(e)). Interestingly, the class-uncertainty imdges Figure. 2(d) and (h)) for the
two meaningful thresholds clearly portray corresponding tissegaats while the class-
uncertainty map for the wrong threshold fails to depict any adiskue interface (see

Figure. 2(f)).
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(f) (9) (h)

Figure. 2An illustration of the class uncertainty theory) fa2D image slice from a C
image of a patient’s abdomen. (b) Image intensgyolgram for (a) with thre
marks for threshold , and . (c) The region computed by settithe
threshold at . (d) The class uncertainty map computed for threslad
clearly depicting the tissue interface of lever atioer soft tissues. (e,f) Sar
as (c,d) but for bone region with thresholc . (g,h) Same as (c,d) but usi
a threshold indicating no meaningful region. Note that the s-uncertainty
map in (h) fails to indicate any tissue interfacel @pells over the entire st
tissue region.

Previously, Saha and Udu [36] demonstrated the use of cl-uncertainty and

Postulate 1 for optimum threshold selection andrl&aha et ¢ [37] showed its use fc
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improving the performance of a Snake-based segmentation algorittwevelr, a major
limitation of Saha and Udupa’s work is that they used an ad hooaghpto computing a
normalized measure for object boundaries which are coupled with urlasgainty
according to Postulate 1. Here, we aim to optimize the grapéameter and use it to
normalize the gradient map in the image. Further, this gradssabyeter is not constant
for all tissue interfaces. Here, we separately optimizegtadient parameter for each

individual tissue interface.

2.1 Intensity-Based Class Uncertainty

Here, a digital image is represented as an orderedCpai(C, f) whose first
element specifies the image domain and the second el¢ihdent [Iyy, vax], Where
Iyiy @andly4x denote the minimum and maximum intensities, is the intensity amcti
Generally,C represents the points with integral co-ordinates those fallsidara hyper-
rectangular parallelepiped. An elementCofcommonly denoted as a vecjnrq orr is
called a pixel in two-dimension (2D); a voxel in three-dimension) @ a spel in n-
dimension. LeF, c C andFy c C represent the hypothetical true object and background
classes, respectively, in an imageletp,(g) denote thea priori probability that an

object spel possesses the intensity value , i.e.,

Po(g) = P(f(p) = glp € Fo),
whereP represents “probability”. Similarly, letz(g) denotes the priori probability

that a background spell has intensity valuee.,

pe(g) = P(f(p) = glp € Fp),
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Independent of the intensity of a spel, delenote the probability of the spel
belonging to the object clagg so thatl — 6 is the probability of the spel belonging to
the background clagg. Often,6 is referred to as the density function. Therefore, the
probability that any spel has the intensity vajyedenoted by(g), is computed as

follows

p(g) = 0po(g) + (1 — O)pp(g)

Using the above equations, thgosteriori probability that a spel with intensity
valueg belongs to object class is defined using Bayes rule [7], i.e.,

_ 0po(9)
r(g) ’

Similarly, thea posteriori probability that a spel with intensity valgebelongs to

P(p € Folf(p) = 9)

the background class is given by

(1-0)ps(g)

P(p € Fglf(p) = 9) = ()

The uncertainty measure of the classification that a el with intensity
valueg falls into the object or background class is the entropy of theatpasteriori
probability values as defined in Equations (6) and (7). This measuedeised to as
class-uncertainty [36] and is estimated according to Shannon and R¥earntopy
equation [38] as follows:

Opo (g)l Opo(g) (1 —-6)ps(g) o 1- 9)203(.9)_

) %8 r(9) r(g) & p(g)

h(g) =

Here, the idea is to model tlepriori probability distributiong, andpgz and the
density functiord as a function of the selected thresholthd the gradient parameter

Thus, the class-uncertainty map of an image varies as aduraftithreshold and the
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gradient parameter; and we will usehm(g)|g € [Iyin, Imax] to denote the threshold
and gradient-dependent class-uncertainty function. The methods for cognplgia
priori probability distribution®, andpz and the density functiof as a function of the

selected threshold and gradient parametarsds are described in Chapter 3.

2.2 Energy Surface and Optimum Thresholding
Here, we use a normalized measure of image gradient to repreisgeat
boundaries as referred in Postulate 1. It's not difficult to findfraum Equation (8) that
class uncertainty measures are computed in the normalized [Ol&] $barefore, a
meaningful formulation of the energy function as per Postulate 1 ®itaibrmalized
measure of image gradients. In other words, we need to introchatkea gradient
parameten into the optimization methods and, further, the parameter may notrremai
constant at different tissue interfaces. Here, we have ado@eadssian model to obtain

a normalized measukg; of intensity gradients using the control parametas follows:

_(V(p))?
Va(p) =1—e 207

whereV is an intensity-gradient operator aWgis a normalized gradient operator.
Note that the output df operator falls in the image intensity scale while that of the
operatoiV, yields a gradient measure in the normalized scale of [0,1]I¥itla energy

functionE is formulated as follows

E(6,0) = ) heo(F®) X (1= Vo) + (1= heo (F)) X Vo)

pPEC
Following the above equation, eaglel p contributes energies in two ways — (1)

class uncertainty is high and gradient is low and (2) classtandg is low and gradient
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high. It may be noted that each of these two situations is sadation to Postulate 1.
Therefore, the energy functighis formulated as an aggregate measure of contradictions

of Postulate 1 from all spels in the image.
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CHAPTER THREE

METHODSAND EXPERIMENTAL SETTING

3.1 Methods

Following the description in the previous chapter, the energy funé&tien
controlled by two parameters, namely, the intensity thresholdmgdeat and the
gradient parameter. It leads to an energy surface (see Figure. 5(e)) fofutheionE
and the aim is to simultaneously optimize the two control parastetmdo on that
energy surface. In order to develop a threshold and gradient optomiaégorithm based
on the theory described in the previous chapter, for given valuesndiz, we need to
compute — (1)a priori object and background intensity distributigngg) andpg(g),
respectively, (2) density functiah (3) normalized gradient map, and (4) optimum
values oft ando on the energy surfade In the following paragraphs, we describe the
methods to accomplish each of these tasks.

At first, the original image is blurred using a Gaussian smogtkernel [7],
currently available under ITK application libraries [39]. The shap¢he kernel (i.e.,
sharp or wide) is controlled by a standard deviation pararmagtend in the current
implementation, we have used a constant value of two pixels/viiteds. This initial
application of blurring serves two purposes. Firstly, it enhanaggsn® with high class-
uncertainty and smoothes out noise over homogeneous regions. As demongt&athd b
and Udupa36, an image with sharp tissue interfaces leads to magoms with high
class-uncertainty and may possess reduced power to control thik @vergy functiork.

Secondly, the enhanced uncertainty map becomes more consistenevatihéimcement
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of the gradient map due to the blurring, often, used in a derivatiGao$sian (DoG)
type edge operator [7]. Finally, it may be pointed out that optintlresholds and
gradients are applied on the original images. Therefore, thenigunsed during the
process of threshold and gradient optimization does not incur anyusalutoss or
blurring at final segmentations.

According to the descriptions of Chapter 2, for any given valugéseointensity
threshold and gradient parameteendos, we computea priori object and background

intensity distribution®,(g) andpgz(g) using the following equations.

1 ifg>t+ 150
po(9) = { (9-(t+150))°
e 202 otherwise,
and,
1 ifg<t—150
pB(g) = { _(g—(t—l.SJ))Z
e 202 otherwise.

The motivation behind using+ 1.5¢ andt — 1.50 as reference object and background
intensities is to dedicate3ax ¢ intensity band (covering ~99.7% of population) for the
interface between the object and background regions. It may beonshtthat, in
Equation 11, the original intensity functiérs replaced by the blurred image intensity
function fg;,, While computing class uncertainty values. The density fundias
computed as the ratio of the number of spels in each of the two tlitredhiehions. The

gradient map in the intensity scale is computed in 2D using the following equations

Vx(p) = fBlur(p + i) — fBlur(p — iy)
Vy(p) = fBlur(p + iy) - fBlur(p - iy)

V(p) = \/v,%<p) +v2(p)
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where i, andi, are unit vectors along the- and y-coordinate axes. The
computation of the intensity gradient map immediately genesalize3D and to any
higher dimension. Finally, the normalized gradient map is compubed tine intensity
gradient using Equation 9.

Now, we describe the optimization method for the threshold and gtadie
parameters ando. Following that the search space is only two-dimensional, we adopt
exhaustive search technique. Therefore, the most criticarfaere is to define the
geometry of optimum points on the energy surface. For the threphdddnetet, the
entire intensity rangfy;n, Iuax] 1S used for searching optimum locations. On the other
hand, search-space for the gradient paraneeierset to[1% X (Iyyax — Iyin), 40% X
(Iyax — ILyin)]1; we stay away from the extreme valuescdfo reduce computation
burden and to also to avoid computational instability. We determine tpes tpf
optimum locations on the energy surface — a Type | optimum locatonsf a
meaningful pit on the energy surfaBewhile a Type Il optimum location forms a
meaningful valley oiE. LetE, denote energy function where the gradient parameter is
fixed at a given value and the threshold parameter is varied; thydorms an energy
curve for the gradient parameter vatelLocal minimal on the energy surfaEeare
referred to as pits while minima on an energy hpeare referred to as valley points.
Depending upon the resolution of the search-space,BoatidE, may contain a large
number of noisy minima. Here, we use the idea of intrinsic basingdesn similar to
catchment basins used in watershed segmentation methods [40, 41],irtquidist
between noisy and meaningful minima. gt o,) denote a pit, i.e., a local minimal on
the energy surfack. The intrinsic basin oft,, o,), denoted byB(t,, g;), is the set of all
locations(t, o) such that there exist a path frqmo) to (t;,0;) and all points have
energy values greater than equakEfe,,0;). EssentiallyB(t;,0;) corresponds to the
region onE that can be flooded by pouring water from tofE ét;, ;) without water

leaking to a location with energy value less thdn, o;) (see Figure. 3). In Figure. 3,
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the black line denotes the energy line of intensity rdhge, [y4x] at a certain gradient
parametep,, each color shows the intrinsic basin for that particular logailmum, and
the depth of a basin is the distance from the top of one col® bwmttom, while all red

basins are counted as noise, invalid valley points.

MAaximum

variation

/)

]
\ﬁf@’vaﬂey point
invalid valley points

intensity

Figure. 3 An illustration of intrinsic basins.

An intrinsic basinB,(t) for a valley point(t,o), i.e., a local minima on the
energy curve:,; is defined similarly. A pit (or, a valley point) is considerecaalid pit
(respectively, a valid valley point) if the height ®ft,, o;) (respectivelyB,(t)) covers
at least 3% of the maximum variationAn(respectivelyE,). For example, the maximum

variation in the energy cun; is the depth of the grey basin. The depth of the tiny red
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basins is less than 3% of the maximum variation and thus fails to quality as a {lajid va
It has been observed from experimental studies that the bothyengfgces and curves
formulated as above are mostly smooth with tiny fluctuations. Suctuétions are more
critical at flat regions of energy surfaces and curves. Theapy motive of defining
valid pits and valley points as above using intrinsic basins is tal auech small
fluctuations while capturing all meaningful minima. Each valid pit is idextids a Type

| optimum location. A valley is defined as a connected path of validyvpoints along
the gradient parameter and a valley is a considered as a gfeamne if its length
covers at least 10% of the search length along the gradiemigtara Finally, a Type I

optimum point is defined at the center of a meaningful valley.

3.2 Experimental Setting

Here we describe our experimental plans to examine the eépess of the
proposed thresholding method. Both 2D and 3D images from clinical scans and simulated
3D MR brain images available online at the Brainweb data42fenave been used. Two
dimensional images are used only for qualitative examinations @Dilenages are used
for both qualitative and quantitative evaluations. The overall aim oéxpgriments is to
examine both accuracy and reproducibility of the proposed method. Both 3Dag€s
and simulated MR data sets are used for accuracy analysis whileToimaGes are used

for reproducibility study.

3.2.1 CT image description
Two cadaveric ankle specimens were scanned in a Siemensi&@elBgdaMulti-
slice CT scanner at 120 kVp and 140 mAs to adequately visualize tlyestsantures.
After scanning in a helical mode with a slice thickness of 0.Gmih collimation of
12 x 0.6mm, data was reconstructed at 0.3mm slice thickness with a normabeane

method utilizing a very sharp algorithm of U75u to achieve high imeg@ution. Image
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parameters for these scans were as follow: matrix siE2=x 512 pixels; number of
slice =314; pixel size =0.21mm. An image slice from one the CT scans is illustrated in
Figure. 7(a). Each ankle specimen was scanned three &ft@esrepositioning on the
table. These CT data sets have been used for examining both accuracy and reptyducibil

of the proposed method.

3.2.2 MR phantom image description
T1-weighted MR phantom images were generated at differeglslef noise and
slice thickness using the online facility supported by Brainsig>. Specifically, four
MR images were simulated at 0%, 1%, 3% and 5% noise levels andsleerthickness
and another phantom image was generated at 0% noise level and 8mmhiskness.
Image parameters for these images are as follows: xmsize =181 x 217 pixels;
number of slice 481; voxel size =Imm. Slices of these phantom images are illustrated

in Figure. 8.

3.2.3 Error estimation
Two important questions need to be answered in order to quantitagixahyine
the accuracy of a thresholding method — (1) how to determine true thresholds and (2) how
to estimate errors of a thresholding. We answer to the firstiqueby using the mean of
interactively selected thresholds by three human users.degiote the mean of the three
thresholds separating two tissue regions selected by thres. ussrs denote the
automatically selected threshold separating the same tisgiens. The error of the

thresholding is defined as follows
i=s H(D)
ZIMAX H()

i=ImIN

Error(s,t) =

whereH (i) is the intensity histogram of the image; and the spirit behind the

formulation of the error is graphically described in Figure. /ewWthere are multiple
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thresholdg;, t, andt; for different tissue regions, the threshglalosest tx is selected

for estimating the error.

intensity
histogram

voxel
count

I [ s

: : /
S MIV intensity MAX

Figure. 4 A graphical description of the error function defininghgomerit of a selected
thresholds; here,t denotes the true threshold. Essentially, it computes the
difference of the number of pixels/voxels, (the yellow region)matized by
image size.
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CHAPTER FOUR

RESULT AND DISCUSSION

4.1 Results

4.1.1 Qualification analysis

Results of application of the method on 2D and 3D CT images arenpzdsin
Figure. 5-7, Figure. 5 illustrates the image slice frol@Taimage of lower abdomen
constraining from different types of tissues, namely, bone, museldddn and fat. The
automatic thresholed selection method has successfully identifiéduthirresholds (see
Figure. 5(c, d, e)). Figure. 5(d) denotes the four thresholded tisgioa kbtained from
original image. Figure. 5(e) indicates the same applied onamteed image which
clearly has less noise. More importantly, the class-uncertairdage at each optimized
threshold describes the interfaces between respective tesgioes. Figure. 6 illustrates
the results of application of the method on an image slice from ian&Je of abdomen,
Here, in the slice, four different tissue regions have been successfualifiéde Also, the
class-uncertainty imageas at different thresholds clearlycdéipe interfaces among
corresponding tissue regions. Figure. 7 illustrates the results of ajgplioAthe methods
on 3D CT images of a cadaveric ankle where the thresholds segédhnat three different

tissue regions (bone, muscle and fat) have been successfully detected.
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(e)

(h)

Figure. 5Results of application of the method on an image $fom a CT data of lowe
abdomen. (a) Original CT image slice. (b) Threskdldegions irdifferent
colors as applied on the original image. (c) Samdld but applied on
smoothed image. (d) Thiholded regions inlifferent colorsas applied on the
original image. ¢) Same as (b) but applied on a smoothed ir. (d)
Thresholds shown in ima histogram with red lines(e) The energy
surface/functionwith valley lines shown in red and pitsdicatec by red
circles. (fh) Object class uncertainty maps at different optimthresholds
Note that the object class uncertainty image highd diffeent tissue
interface at different optimum thresho
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(9) (h)

Figure. 6 Same dsgure 5, but for a CT image slice of abdomen.
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(h)

Figure. 7 Same dsgure 5, but for a 3D CT image of ankle.
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4.1.2 Comparison with Otsu’s method

As an important thresholding method, Otsu’'s method is a nonparamettic a
unsupervised method of automatic threshold selection for picture setjorenta
presented. An optimal threshold is selected by the discriminaaticn, namely, so as to
maximize the separability of the resultant classes in lgnasls. The procedure is very
simple, utilizing only the zeroth- and the first-order cumulativements of the gray-
level histogram. [44]

Although proposed long time ago, Otsu’'s method is still a very popular
thresholding method due to its simplicity and effectiveness, anchdede Otsu’s
thresholding methods are also proposed in later years. Here thé&hatgaised do
comparison is a multiple thresholding method, implemented in Insight Tool Kit [39].

This algorithm can find multiple thresholds as the user want; howevean't
automatically find proper number of thresholds for an image. So the dsomp& done
is the following way:

1). Use our automatic algorithm to determine how many threshblusds be
found for the input image.

2). Do Otsu’s thresholding with the number of thresholds obtained from above
step.

3). Use different colors for different object regions.

Here, the image data used for comparison are gray-level in@g2d color
images taken from nature scenes, all coming from internet but not clmizgés. Figure.

8 shows the comparison result on gray-level ‘Lena’ image.
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(b)

Figure. 8Automatic thresholding compare with Otsu's thredimgy method. (a) Origine
lena image. (b) Automatic thresholding result. @$u's threhsolding methe
with same number of thresho

@

By comparing the two results, we ('t defeatone by another; however, one ht
issue is that our new proposed method could autoaligt determine how man

thresholds are needed for a certain image, whdeQtst' s method could not accompli

that by itself.
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4.13 Accuracy analysis of MR phantom images
T1-weighted MR brain phantom images were used for tifafime accurac
analysis of the method. Here tground truth is determined using manual threshgldi
the noise free MR phantom image at 1mm slice ttesknFor every image, both man
and automatic thresholding yields four thresholds safyag each image into fiv
regions; see Figure. @-h). A quantitative analysis of errors for different pkams is

presented in Table 1.

Figure. 9 MRI T1 phantom with different noise leveland their segmented res.. (a)
no noise. (b) 1% noise. (c) 3% noise. (d) 5% ndis}-(g) segmented rest
for different noise level
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Phantom description Error rate
1% threshold | ?Z threshold| % threshold ¥ threshold
0% noise, 1Imm 3.1% 3.0% 2.9% 3.4%
1% noise, 1mm 1.1% 0.7% 0.1% 0.2%
3% noise, 1mm 2.1% 2.0% 2.0% 2.3%
5% noise, 1mm 0.1% 0.1% 0.1% 0.001%
0% noise, 3mm 4.3% 3.1% 2.9% 0.1%

Table 1 Error measures of thresholding for different T1-weighted MR phantages
and tissue regions.

In Table 1, we can see that as noise level goes up, the thiesbibishift a little,
higher noise level needs larger smoothing kernel size. And if tlse hevel goes even

higher, some thresholds will disappear due to the merging of different braingeg
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4.1.4 Accuracy analysis on 3D CT ankle images

Threshold errors for CT images of cadaveric ankles aremies$ in Table 2. As

mentioned previously, manual thresholding was used as the ground truth for thresholding

Here, three thresholds were identified for each CT image i(séégure. 7). Table 2

presents the quantitative error measures of thresholding forfthen&es of two ankle

specimens.

Data description Error rate
1st threshold 2nd threshold 3rd threshald
Ankle 1 0.1% 1.9% 0.7%
Ankle 2 0.2% 1.9% 0.8%

Table 2 Error measures of thresholding for T images of two ankle specimens

4.1.5 Reproducibility analysis of 3D CT ankle image sets

For reproducibility analysis, we analyze the fractional volumdifférent tissue

regions as computed by applying the proposed thresholding methods omaQési

received by different scans. Table 3 shows these fractional eslofrdifferent tissues in

different scans. As shown in the table, varieties in thresholdedgetisslumes vary

minimally in different scans showing a high multi-scan reproducibility of tetéhod.

Image Dataset 1 Image Dataset 2
Bones Tissue Fat/Skin Bones Tissue Fat/Skin
Data 1 21.1% 41.6% 37.3% 20.4% 44.0% 35.6%
Data 2 20.3% 41.8% 37.9% 20.5% 43.7% 35.8%
Data 3 20.2% 41.3% 38.5% 20.4% 44.2% 35.4%
Mean 20.5% 41.6% 37.9% 20.4% 44.0% 35.6%
Std. Dev. 0.45% 0.23% 0.57% 0.07% 0.24% 0.18%

Table 3 Preliminary results of reproducibility analysis using MDCTaepeans of a
cadaveric ankle specimen.
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4.2 Discussion

A new method has been developed for simultaneously computing optimues val
for thresholds and gradient parameters for different object/tiaseidaces. The method
has been applied on several 2D and 3D medical image data setshasdsitccessfully
determined both thresholds and gradients for different tissueaicésreven when some
of the thresholds are almost impossible to locate in their hatogr Accuracy and
reproducibility of the method have been evaluated using both MRI brainophs@nd
real MDCT images of cadaveric ankles each scanned thrice amdeliminary results

are very promising.
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