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ABSTRACT 

The knowledge of thresholding and gradient at different tissue interfaces is of 

paramount interest in image segmentation and other imaging methods and 

applications. Most thresholding and gradient selection methods primarily focus on 

image histograms and therefore, fail to harness the information generated by intensity 

patterns in an image. We present a new thresholding and gradient optimization 

method which accounts for spatial arrangement of intensities forming different objects 

in an image. Specifically, we recognize object class uncertainty, a histogram-based 

feature, and formulate an energy function based on its correlation with image 

gradients that characterizes the objects and shapes in a given image. Finally, this 

energy function is used to determine optimum thresholds and gradients for various 

tissue interfaces. The underlying theory behind the method is that objects manifest 

themselves with fuzzy boundaries in an acquired image and that, in a probabilistic 

sense; intensities with high class uncertainty are associated with high image gradients 

generally indicating object/tissue interfaces. The new method simultaneously 

determines optimum values for both thresholds and gradient parameters at different 

object/tissue interfaces. The method has been applied on several 2D and 3D medical 

image data sets and it has successfully determined both thresholds and gradients for 

different tissue interfaces even when some of the thresholds are almost impossible to 

locate in their histograms. The accuracy and reproducibility of the method has been 

examined using 3D multi-row detector computed tomography images of two 

cadaveric ankles each scanned thrice with repositioning the specimen between two 

scans.
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Image Segmentation and Thresholding 

Over the last few decades, multi-layered extraction of knowledge embedded in 

two- and higher-dimensional images has remained a front line research topic [1-7]. In 

particular availability of a wide spectrum of medical imaging techniques [8] including 

MR, ultrasound, CT, PET, and X- and γ-rays have further intensified the image 

processing needs for computerized extraction of knowledge from the huge image data 

sets produced. Segmentation has remained a salient task in most imaging applications, in 

particular, those involving object classification, geometry, shape, and motion analysis. 

Some other imaging steps including interpolation, filtering and registration may also be 

significantly improved with the a priori knowledge of objects and shapes. With all these 

reasons, defining objects in a precise and effective way becomes vital for any 

computerized imaging applications, and this is usually referred as image segmentation.  

Pal and Pal [9] reviewed various methods for gray-level image segmentation. 

Despite major advances in image segmentation methods [10-15], often, yielding 

acceptable results, thresholding is undoubtedly one of the most popular segmentation 

approaches, because of its simplicity and relative robustness. Usually the gray levels of 

pixels belonging to the object are substantially different from the gray levels of those 

belonging to the background, so by thresholding at proper thresholds, it is quite easy and 

effective to separate object from background. The output of thresholding operation is a 

binary image whose one state will indicate the foreground objects, that is, printed text, a 
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legend, a target, defective part of a material, etc., while the complementary state will 

correspond to the background. Depending on the application, the foreground can be 

represented by gray-level 0, that is, black as for text, and the background by the highest 

luminance for the document paper, which is 255 in 8-bit images, or conversely the 

foreground by white and the background by black. Various factors, such as nonstationary 

and correlated noise, ambient illumination, busyness of gray levels within the object and 

its background, inadequate contrast, and object size not commensurate with the scene, 

complicate the thresholding potation. Finally, the lack of object measure to assess the 

performance of various thresholding algorithms, and the difficulty of extensive testing in 

a task-oriented environment, are other major handicaps [43]. 

1.2   Optimum and Automatic thresholding 

 Often, optimum thresholding along with gradient selection are hidden problems 

in many advanced segmentation approaches, or, at least would help toward automation of 

such methods. For example, the knowledge of average tissue intensity along with the 

gradient at different tissue interface should bring momentous improvements in different 

boundary-, region- and shape-based segmentation approaches. 

Automatic selection of a robust and accurate threshold has remained a challenge 

in image segmentation. Many methods for automatic threshold selection have been 

reported [16-35] over the past five decades. In late 80’s, Sahoo et al. [16] published a 

survey of optimum thresholding methods while Lee et al. [17] reported the results of a 

comparative study of thresholding methods. Glasbely [18] published the results of 

another comparative study involving eleven histogram-based thresholding algorithms. 

Among the early works on automatic thresholding, Prewitt and Mendelson [19] suggested 
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using the valleys of the histogram, while Doyle [20] advocated the choice of the median. 

Otsu [21] developed a thresholding method maximizing the between-class variance. Tsai 

[24] proposed a choice of the threshold at which resulting binary images have identical 

first three moments. 

Later works on threshing have utilized entropy of the original and thresholded 

images to construct an optimization criterion. For example, Pun’s method [25] maximizes 

the upper bound of the a posteriori entropy of the histogram. Wong and Sahoo's method 

[26] selects the optimum threshold that maximizes the a posteriori entropy subject to 

certain inequality constraints characterizing the uniformity and shape of the segmented 

regions. Pal and Pal’s method [27] utilized the joint probability distribution of the 

neighboring pixels which they further modified28 with a new definition of entropy. 

Kapur et al. [29] proposed a thresholding method maximizing the sum of entropies of the 

segmented regions and a similar method was reported by Abutaleb [30] that maximizes 

the 2D entropy. The method by Brink [31] maximizes the sum of the entropies computed 

from two autocorrelation functions of the thresholded image histograms. Li and Lee's 

method [32] minimizes relative cross entropy or Kullback-Leibler distance between the 

original and thresholded images. Kitler and Illingworth33 developed a thresholding 

method minimizing segmentation errors derived using an information-theoretic approach, 

while Dunn et al.'s method [34] used a uniform error criterion. Leung and Lam [35] 

developed a method that maximizes segmented image information derived using an 

information-theoretic approach and demonstrated that their method is better than the 

methods based on minimum and uniform errors [33, 34]. 
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Although, Wong and Sahoo [26] and Pal and Pal [27, 28] incorporated some 

spatial image information in their methods, others are mostly histogram-based techniques. 

One common shortcoming of a purely histogram-based approach is that it does not utilize 

the significant amount of information embedded in the spatial distribution of intensities 

and in image morphology. Often, it is not possible for a human observer to select a 

threshold in an image just from its histogram without seeing the original image. On the 

other hand, the image may contain clear partitions of different object or tissue regions 

and it may only be a trivial task to select the threshold from the image. This observation 

inspired us to develop a method that directly makes use of impressions created on the 

image by different object/tissue interfaces. In our previous work [36], we introduced the 

idea of class-uncertainty and demonstrated its relation with interfaces of multiple objects 

or tissue regions. The method captures the fuzziness caused by blurring or the ubiquitous 

partial voluming effect introduced by an imaging device and utilizes this fuzziness in 

optimum thresholding by relating it with class uncertainty. Class uncertainty is byproduct 

information of object classification and it’s often ignored in the context of computer 

vision and imaging applications. In our previous work, it was demonstrated that high 

class-uncertainty, commonly associated with intermediate intensity values on the 

histogram between two object classes, appear in the vicinity of object or tissue interfaces 

in an image. This observation provides a unique theory of relating histogram based 

information with image derived features.  

1.3  Outline 

Although, based on the above idea, an optimum threshold selection method was 

developed in our previous work, it suffers from two limitations – (1) an ad hoc rank-
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based approach was adopted for normalizing the image gradient feature which may shift 

the fulcrum as the amount of edginess varies across images and (2) fails to capture 

varying intensity contrasts at different tissue interfaces. Here, we solve these two major 

problems by simultaneously optimizing the gradients and threshold. The new method 

needs no a priori assumption on image gradient values and yields the optimum image 

gradients for different tissue interfaces along with the optimum thresholds.  

In Chapter 2, we discuss the class uncertainty theory and how it is combined with 

gradient optimization. In Chapter 3, we show in detail how we implement our method 

and the experimental settings. In Chapter 4, we present the qualification result of our 

method, and the quantitative analysis consisting of both accuracy and reproducibility. 
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CHAPTER TWO 

THEORY 

 

In the context of thresholding or classification, we mostly care about the class or 

the region to which an image point is partitioned and, often, ignore an important piece of 

information related to the confidence level or uncertainty associated with the 

classification; we will refer to it as class-uncertainty. For example, considering the object 

and background intensity distribution illustrated in Figure. 1, a point with either intensity 

�� or ��will be classified as an object point. However, the class-uncertainties in the two 

cases are significantly different. In an original work, Saha and Udupa [36] derived a 

measure of class-uncertainty in terms of a priori object and background intensity 

distributions and the density function. Also, they demonstrated the relation class-

uncertainty and image-derived features. The following postulate proposed in [36] governs 

the relation between class-uncertainty and image-derived features. 

Postulate A. In an image with fuzzy boundaries, under optimum partitioning of object 

classes, intensities with high class uncertainty appear around object boundaries. 
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Figure. 1  Illustration of the relation between thresholding and object class uncertainty 
values for a two class problem. 

Although it is difficult to prove or disprove the postulate because of its nature, its 

validity may be justified on real-life images. Let us consider a computed tomography (CT) 

image of abdomen (see Figure. 2(a)) depicting several tissue regions with different 

intensity values. To illustrate the basic idea of the class uncertainty theory, let us 

manually pick three thresholds on the intensity histogram of the CT image (see Figure. 

2(b)) of which two are expected to separate meaningful tissue regions (see Figure. 2(c,g)) 

while the other is intentionally selected not to represent a meaningful tissue region (see 

Figure. 2(e)). Interestingly, the class-uncertainty images (see Figure. 2(d) and (h)) for the 

two meaningful thresholds clearly portray corresponding tissue interfaces while the class-

uncertainty map for the wrong threshold fails to depict any visible tissue interface (see 

Figure. 2(f)). 
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Figure. 2 An illustration of the class uncertainty theory. (a) A 2D image slice from a CT 
image of a patient’s abdomen. (b) Image intensity histogram for (a) with three 
marks for thresholds 
threshold at 
clearly depicting the tissue interface of lever and other soft tissues. (e,f) Same 
as (c,d) but for bone region with threshold at 
a threshold 
map in (h) fails to indicate any tissue interface and spells over the entire soft 
tissue region. 

Previously, Saha and Udupa

Postulate 1 for optimum threshold selection and later Saha et al.

  (a) 

 (c)  (d) 

 (f)  (g) 

An illustration of the class uncertainty theory. (a) A 2D image slice from a CT 
image of a patient’s abdomen. (b) Image intensity histogram for (a) with three 
marks for thresholds ,  and . (c) The region computed by setting 

. (d) The class uncertainty map computed for threshold at 
clearly depicting the tissue interface of lever and other soft tissues. (e,f) Same 
as (c,d) but for bone region with threshold at . (g,h) Same as (c,d) but using 

indicating no meaningful region. Note that the class
map in (h) fails to indicate any tissue interface and spells over the entire soft 

 

Previously, Saha and Udupa [36] demonstrated the use of class

Postulate 1 for optimum threshold selection and later Saha et al. [37] showed its use for 

8 

 (b) 

 (e) 

 (h) 

An illustration of the class uncertainty theory. (a) A 2D image slice from a CT 
image of a patient’s abdomen. (b) Image intensity histogram for (a) with three 

. (c) The region computed by setting the 
(d) The class uncertainty map computed for threshold at  

clearly depicting the tissue interface of lever and other soft tissues. (e,f) Same 
. (g,h) Same as (c,d) but using 

indicating no meaningful region. Note that the class-uncertainty 
map in (h) fails to indicate any tissue interface and spells over the entire soft 

demonstrated the use of class-uncertainty and 

showed its use for 
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improving the performance of a Snake-based segmentation algorithm. However, a major 

limitation of Saha and Udupa’s work is that they used an ad hoc approach to computing a 

normalized measure for object boundaries which are coupled with class-uncertainty 

according to Postulate 1. Here, we aim to optimize the gradient parameter and use it to 

normalize the gradient map in the image. Further, this gradient parameter is not constant 

for all tissue interfaces. Here, we separately optimize the gradient parameter for each 

individual tissue interface.  

2.1 Intensity-Based Class Uncertainty 

Here, a digital image is represented as an ordered pair � 	 
�, 
� whose first 

element specifies the image domain and the second element �
|� � ����� , �����, where 

���� and ���� denote the minimum and maximum intensities, is the intensity function. 

Generally, C represents the points with integral co-ordinates those falling inside a hyper-

rectangular parallelepiped. An element of �, commonly denoted as a vector �, � or � is 

called a pixel in two-dimension (2D); a voxel in three-dimension (3D) and a spel in n-

dimension. Let ��  � and �!  � represent the hypothetical true object and background 

classes, respectively, in an image �. Let "�
#� denote the a priori probability that an 

object spel possesses the intensity value  , i.e., 

"�
#� 	 $


�� 	 #|� % ���, 
where $ represents “probability”. Similarly, let "!
#� denotes the a priori probability 

that a background spell has intensity value g, i.e., 

"!
#� 	 $


�� 	 #|� % �!�, 
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Independent of the intensity of a spel, let ' denote the probability of the spel 

belonging to the object class �� so that 1 ( ' is the probability of the spel belonging to 

the background class �!. Often, ' is referred to as the density function. Therefore, the 

probability that any spel has the intensity value #, denoted by "
#�, is computed as 

follows 

"
#� 	 θ"�
#� * 
1 ( '�"!
#� 
Using the above equations, the a posteriori probability that a spel with intensity 

value # belongs to object class is defined using Bayes rule [7], i.e., 

$
� % ��|

�� 	 #� 	 '"�
#�"
#� , 
Similarly, the a posteriori probability that a spel with intensity value # belongs to 

the background class is given by 

$
� % �!|

�� 	 #� 	 
1 ( '�"!
#�"
#�  

The uncertainty measure of the classification that a spel � % �  with intensity 

value g falls into the object or background class is the entropy of the two a posteriori 

probability values as defined in Equations (6) and (7). This measure is referred to as 

class-uncertainty [36] and is estimated according to Shannon and Weaver’s entropy 

equation [38] as follows: 

+
#� 	 ( '"�
#�"
#� log '"�
#�"
#� ( 
1 ( '�"!
#�"
#� log 
1 ( '�"!
#�"
#� . 
Here, the idea is to model the a priori probability distributions "� and "! and the 

density function ' as a function of the selected threshold � and the gradient parameter /. 

Thus, the class-uncertainty map of an image varies as a function of threshold � and the 
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gradient parameter /; and we will use �+0,1
#�2# % ����� , ����� to denote the threshold 

and gradient-dependent class-uncertainty function. The methods for computing the a 

priori probability distributions "� and "! and the density function ' as a function of the 

selected threshold and gradient parameters � and / are described in Chapter 3. 

2.2 Energy Surface and Optimum Thresholding 

Here, we use a normalized measure of image gradient to represent object 

boundaries as referred in Postulate 1. It’s not difficult to find out from Equation (8) that 

class uncertainty measures are computed in the normalized [0,1] scale. Therefore, a 

meaningful formulation of the energy function as per Postulate 1 entails a normalized 

measure of image gradients. In other words, we need to introduce another gradient 

parameter σ into the optimization methods and, further, the parameter may not remain 

constant at different tissue interfaces. Here, we have adopted a Gaussian model to obtain 

a normalized measure 45 of intensity gradients using the control parameter σ as follows: 

41
�� 	 1 ( 67
4
���8
�18  

where 4 is an intensity-gradient operator and 45 is a normalized gradient operator. 

Note that the output of 4 operator falls in the image intensity scale while that of the 

operator 45 yields a gradient measure in the normalized scale of [0,1]. Finally, the energy 

function E is formulated as follows 

:
�, /� 	 ; +0,1<

��= > <1 ( 41
��= *
�%?

@1 ( +0,1<

��=A > 41
�� 

Following the above equation, each spel � contributes energies in two ways – (1) 

class uncertainty is high and gradient is low and (2) class-uncertainty is low and gradient 
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high. It may be noted that each of these two situations is a contradiction to Postulate 1. 

Therefore, the energy function : is formulated as an aggregate measure of contradictions 

of Postulate 1 from all spels in the image. 
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CHAPTER THREE 

METHODS AND EXPERIMENTAL SETTING 

 

3.1 Methods 

Following the description in the previous chapter, the energy function E  is 

controlled by two parameters, namely, the intensity threshold parameter t  and the 

gradient parameter σ. It leads to an energy surface (see Figure. 5(e)) for the function E 

and the aim is to simultaneously optimize the two control parameters t and σ on that 

energy surface. In order to develop a threshold and gradient optimization algorithm based 

on the theory described in the previous chapter, for given values of t and σ, we need to 

compute – (1) a priori object and background intensity distributions "�
#� and "!
#�, 

respectively, (2) density function ', (3) normalized gradient map 45 and (4) optimum 

values of t and σ on the energy surface E. In the following paragraphs, we describe the 

methods to accomplish each of these tasks.  

At first, the original image is blurred using a Gaussian smoothing kernel [7], 

currently available under ITK application libraries [39]. The shape of the kernel (i.e., 

sharp or wide) is controlled by a standard deviation parameter /C  and in the current 

implementation, we have used a constant value of two pixels/voxels for /C. This initial 

application of blurring serves two purposes. Firstly, it enhances regions with high class-

uncertainty and smoothes out noise over homogeneous regions. As demonstrated by Saha 

and Udupa36, an image with sharp tissue interfaces leads to narrow regions with high 

class-uncertainty and may possess reduced power to control the overall energy function E. 

Secondly, the enhanced uncertainty map becomes more consistent with the enhancement 
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of the gradient map due to the blurring, often, used in a derivative of Gaussian (DoG) 

type edge operator [7]. Finally, it may be pointed out that optimum thresholds and 

gradients are applied on the original images. Therefore, the blurring used during the 

process of threshold and gradient optimization does not incur any structural loss or 

blurring at final segmentations. 

According to the descriptions of Chapter 2, for any given values of the intensity 

threshold and gradient parameters � and /, we compute a priori object and background 

intensity distributions "�
#� and "!
#� using the following equations. 

"�
#� 	 D 1 if # H � * 1.5/
67<J7
0K�.L1�=8

�18 otherwise,
� 

and,  

"!
#� 	 D 1 if # Q � ( 1.5/
67<J7
07�.L1�=8

�18 otherwise.
� 

The motivation behind using � * 1.5/ and � ( 1.5/ as reference object and background 

intensities is to dedicate a 3 > / intensity band (covering ~99.7% of population) for the 

interface between the object and background regions. It may be mentioned that, in 

Equation 11, the original intensity function f is replaced by the blurred image intensity 

function fRSTU  while computing class uncertainty values. The density function '  is 

computed as the ratio of the number of spels in each of the two thresholded regions. The 

gradient map in the intensity scale is computed in 2D using the following equations  

4V
�� 	 
!WXY
� * ZV� ( 
!WXY
� (  ZV�4[
�� 	 
!WXY<� *  Z[= ( 
!WXY<� ( Z[=
4
�� 	 \4V�
�� * 4[�
��  
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where ZV  and i[  are unit vectors along the x - and  y -coordinate axes. The 

computation of the intensity gradient map immediately generalizes to 3D and to any 

higher dimension. Finally, the normalized gradient map is computed from the intensity 

gradient using Equation 9.  

Now, we describe the optimization method for the threshold and gradient 

parameters t and σ. Following that the search space is only two-dimensional, we adopt an 

exhaustive search technique. Therefore, the most critical factor here is to define the 

geometry of optimum points on the energy surface. For the threshold parameter t, the 

entire intensity range ����� , ����� is used for searching optimum locations. On the other 

hand, search-space for the gradient parameter σ is set to �1% > 
���� ( �����, 40% >

���� ( ������ ; we stay away from the extreme values of σ  to reduce computation 

burden and to also to avoid computational instability. We determine two types of 

optimum locations on the energy surface – a Type I optimum location forms a 

meaningful pit on the energy surface E  while a Type II optimum location forms a 

meaningful valley on :. Let :1 denote energy function where the gradient parameter is 

fixed at a given value σ and the threshold parameter is varied; thus, :1 forms an energy 

curve for the gradient parameter value /. Local minimal on the energy surface : are 

referred to as pits while minima on an energy line :1 are referred to as valley points. 

Depending upon the resolution of the search-space, both : and :1 may contain a large 

number of noisy minima. Here, we use the idea of intrinsic basin, an idea similar to 

catchment basins used in watershed segmentation methods [40, 41], to distinguish 

between noisy and meaningful minima. Let 
��, /�� denote a pit, i.e., a local minimal on 

the energy surface E. The intrinsic basin of 
��, /��, denoted by b
��, /��, is the set of all 

locations 
�, /� such that there exist a path from 
�, /� to 
��, /�� and all points have 

energy values greater than equal to :
��, /��. Essentially, b
��, /�� corresponds to the 

region on E that can be flooded by pouring water from top at :
��, /�� without water 

leaking to a location with energy value less than :
��, /�� (see Figure. 3). In Figure. 3, 
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the black line denotes the energy line of intensity range ����� , ����� at a certain gradient 

parameter /c, each color shows the intrinsic basin for that particular local minimum, and 

the depth of a basin is the distance from the top of one color to its bottom, while all red 

basins are counted as noise, invalid valley points. 

 

Figure. 3 An illustration of intrinsic basins. 

An intrinsic basin b1
�� for a valley point 
�, /�, i.e., a local minima on the 

energy curve :1 is defined similarly. A pit (or, a valley point) is considered as a valid pit 

(respectively, a valid valley point) if the height of b
��, /�� (respectively, b1
��) covers 

at least 3% of the maximum variation in : (respectively, :1). For example, the maximum 

variation in the energy curve :1 is the depth of the grey basin. The depth of the tiny red 
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basins is less than 3% of the maximum variation and thus fails to quality as a valid valley. 

It has been observed from experimental studies that the both energy surfaces and curves 

formulated as above are mostly smooth with tiny fluctuations. Such fluctuations are more 

critical at flat regions of energy surfaces and curves. The primary motive of defining 

valid pits and valley points as above using intrinsic basins is to avoid such small 

fluctuations while capturing all meaningful minima.  Each valid pit is identified as a Type 

I optimum location. A valley is defined as a connected path of valid valley points along 

the gradient parameter and a valley is a considered as a meaningful one if its length 

covers at least 10% of the search length along the gradient parameter. Finally, a Type II 

optimum point is defined at the center of a meaningful valley.  

3.2 Experimental Setting 

Here we describe our experimental plans to examine the effectiveness of the 

proposed thresholding method. Both 2D and 3D images from clinical scans and simulated 

3D MR brain images available online at the Brainweb data site [42] have been used. Two 

dimensional images are used only for qualitative examinations while 3D images are used 

for both qualitative and quantitative evaluations. The overall aim of our experiments is to 

examine both accuracy and reproducibility of the proposed method. Both 3D CT images 

and simulated MR data sets are used for accuracy analysis while only CT images are used 

for reproducibility study. 

3.2.1 CT image description 

Two cadaveric ankle specimens were scanned in a Siemens Sensation 64 Multi-

slice CT scanner at 120 kVp and 140 mAs to adequately visualize the bony structures. 

After scanning in a helical mode with a slice thickness of 0.6mm and collimation of 

12 > 0.6mm, data was reconstructed at 0.3mm slice thickness with a normal cone beam 

method utilizing a very sharp algorithm of U75u to achieve high image resolution. Image 
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parameters for these scans were as follow: matrix size = 512 > 512 pixels; number of 

slice = 314; pixel size = 0.21mm. An image slice from one the CT scans is illustrated in 

Figure. 7(a). Each ankle specimen was scanned three times after repositioning on the 

table. These CT data sets have been used for examining both accuracy and reproducibility 

of the proposed method. 

3.2.2 MR phantom image description 

T1-weighted MR phantom images were generated at different levels of noise and 

slice thickness using the online facility supported by Brainweb site42. Specifically, four 

MR images were simulated at 0%, 1%, 3% and 5% noise levels and 1mm slice thickness 

and another phantom image was generated at 0% noise level and 3mm slice thickness. 

Image parameters for these images are as follows: matrix size = 181 > 217  pixels; 

number of slice = 181; voxel size = 1mm. Slices of these phantom images are illustrated 

in Figure. 8. 

3.2.3 Error estimation 

Two important questions need to be answered in order to quantitatively examine 

the accuracy of a thresholding method – (1) how to determine true thresholds and (2) how 

to estimate errors of a thresholding. We answer to the first question by using the mean of 

interactively selected thresholds by three human users. Let t denote the mean of the three 

thresholds separating two tissue regions selected by three users. Let s  denote the 

automatically selected threshold separating the same tissue regions. The error of the 

thresholding is defined as follows 

:hhih
j, �� 	 ∑ l
m�0noC∑ l
m��pqrno�pst
 

where l
m� is the intensity histogram of the image; and the spirit behind the 

formulation of the error is graphically described in Figure. 4. When there are multiple 
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thresholds ��, �� and �u for different tissue regions, the threshold �n closest to j is selected 

for estimating the error. 

 

Figure. 4 A graphical description of the error function defining up the merit of a selected 
threshold s; here, �  denotes the true threshold. Essentially, it computes the 
difference  of the number of pixels/voxels, (the yellow region), normalized by 
image size. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

 

4.1 Results 

4.1.1 Qualification analysis 

Results of application of the method on 2D and 3D CT images are presented in 

Figure. 5-7, Figure. 5 illustrates the image slice from a CT image of lower abdomen 

constraining from different types of tissues, namely, bone, muscle, bladder and fat. The 

automatic thresholed selection method has successfully identified the four thresholds (see 

Figure. 5(c, d, e)). Figure. 5(d) denotes the four thresholded tissue region obtained from 

original image. Figure. 5(e) indicates the same applied on a smoothed image which 

clearly has less noise. More importantly, the class-uncertainty image at each optimized 

threshold describes the interfaces between respective tissue regions. Figure. 6 illustrates 

the results of application of the method on an image slice from a CT image of abdomen, 

Here, in the slice, four different tissue regions have been successfully identified. Also, the 

class-uncertainty imageas at different thresholds clearly depict the interfaces among 

corresponding tissue regions. Figure. 7 illustrates the results of application of the methods 

on 3D CT images of a cadaveric ankle where the thresholds separating the three different 

tissue regions (bone, muscle and fat) have been successfully detected.  
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Figure. 5 Results of application of the method on an image slice from a CT data of lower 
abdomen. (a) Original CT image slice. (b) Thresholded regions in 
colors as applied on the original image. (c) Same as (b) but applied on a 
smoothed image. (d) Thres
original image. (
Thresholds shown in image
surface/function 
circles. (f-h) Object class uncertainty maps at different optimum thresholds. 
Note that the object class uncertainty image highlights differ
interface at different optimum thresholds.

 (a)  (b)

 (c)  (d)

 (f)  (g) 

Results of application of the method on an image slice from a CT data of lower 
abdomen. (a) Original CT image slice. (b) Thresholded regions in 
colors as applied on the original image. (c) Same as (b) but applied on a 
smoothed image. (d) Thresholded regions in different colors 
original image. (c) Same as (b) but applied on a smoothed image
Thresholds shown in image histogram with red lines. 
surface/function with valley lines shown in red and pits indicated

h) Object class uncertainty maps at different optimum thresholds. 
Note that the object class uncertainty image highlights differ
interface at different optimum thresholds. 
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(b) 

 (e) 

 (h) 

Results of application of the method on an image slice from a CT data of lower 
abdomen. (a) Original CT image slice. (b) Thresholded regions in different 
colors as applied on the original image. (c) Same as (b) but applied on a 

different colors as applied on the 
Same as (b) but applied on a smoothed image. (d) 

 (e) The energy 
indicated by red 

h) Object class uncertainty maps at different optimum thresholds. 
Note that the object class uncertainty image highlights different tissue 
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Figure. 6 Same as Figure.

 

 (a)  (b)

 (d)

 (f)  (g) 

Figure. 5, but for a CT image slice of abdomen. 
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 (c)  

 (e)  

 (h) 
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Figure. 7 Same as Figure.

 

 (a)  (b)

 (d) 

 (f)  (g) 

Figure. 5, but for a 3D CT image of ankle. 
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 (c)  

 (e) 

 (h) 
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4.1.2 Comparison with Otsu’s method 

As an important thresholding method, Otsu’s method is a nonparametric and 

unsupervised method of automatic threshold selection for picture segmentation is 

presented. An optimal threshold is selected by the discriminant criterion, namely, so as to 

maximize the separability of the resultant classes in gray levels. The procedure is very 

simple, utilizing only the zeroth- and the first-order cumulative moments of the gray-

level histogram. [44] 

Although proposed long time ago, Otsu’s method is still a very popular 

thresholding method due to its simplicity and effectiveness, and extended Otsu’s 

thresholding methods are also proposed in later years. Here the algorithm used do 

comparison is a multiple thresholding method, implemented in Insight Tool Kit [39].  

This algorithm can find multiple thresholds as the user want; however, it can’t 

automatically find proper number of thresholds for an image. So the comparison is done 

is the following way: 

1). Use our automatic algorithm to determine how many thresholds should be 

found for the input image. 

2). Do Otsu’s thresholding with the number of thresholds obtained from above 

step.  

3). Use different colors for different object regions. 

Here, the image data used for comparison are gray-level images or 2d color 

images taken from nature scenes, all coming from internet but not clinical images. Figure. 

8 shows the comparison result on gray-level ‘Lena’ image. 
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             (a)                                             (b)                                       (c)

Figure. 8 Automatic thresholding compare with Otsu's thresholding method. (a) Original 
lena image. (b) Automatic thresholding result. (c) Otsu's threhsolding method 
with same number of thresholds

By comparing the two results, we can

issue is that our new proposed method could automatically determine how many 

thresholds are needed for a certain image, while the Otsu

that by itself.  

 

     

(a)                                             (b)                                       (c)

Automatic thresholding compare with Otsu's thresholding method. (a) Original 
lena image. (b) Automatic thresholding result. (c) Otsu's threhsolding method 
with same number of thresholds 

By comparing the two results, we can’t defeat one by another; however, one huge 

issue is that our new proposed method could automatically determine how many 

thresholds are needed for a certain image, while the Otsu’s method could not accomplish 
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(a)                                             (b)                                       (c) 

Automatic thresholding compare with Otsu's thresholding method. (a) Original 
lena image. (b) Automatic thresholding result. (c) Otsu's threhsolding method 

one by another; however, one huge 

issue is that our new proposed method could automatically determine how many 

s method could not accomplish 
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4.1.3 

T1-weighted MR brain phantom images were used for quantitative accuracy 

analysis of the method. Here the 

the noise free MR phantom image at 1mm slice thickness. For every image, both manual 

and automatic thresholding yields four thresholds separating each image into five 

regions; see Figure. 9 (e

presented in Table 1.  

(a)

(e)

Figure. 9  MRI T1 phantoms
no noise. (b) 1% noise. (c) 3% noise. (d) 5% noise. (e)
for different noise levels.

 

3 Accuracy analysis of MR phantom images 

weighted MR brain phantom images were used for quantitative accuracy 

analysis of the method. Here the ground truth is determined using manual thresholding of 

the noise free MR phantom image at 1mm slice thickness. For every image, both manual 

automatic thresholding yields four thresholds separating each image into five 

(e-h). A quantitative analysis of errors for different phantoms is 

(b) (c)

(f) (g)

MRI T1 phantoms with different noise levels and their segmented results
no noise. (b) 1% noise. (c) 3% noise. (d) 5% noise. (e)-(g) segmented result 
for different noise levels. 
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weighted MR brain phantom images were used for quantitative accuracy 

ground truth is determined using manual thresholding of 

the noise free MR phantom image at 1mm slice thickness. For every image, both manual 

automatic thresholding yields four thresholds separating each image into five 

A quantitative analysis of errors for different phantoms is 

(d) 

(h) 

and their segmented results. (a) 
(g) segmented result 
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Phantom description Error rate 
1st threshold 2nd threshold 3rd threshold 4th threshold 

0% noise, 1mm 3.1% 3.0% 2.9% 3.4% 
1% noise, 1mm 1.1% 0.7% 0.1% 0.2% 
3% noise, 1mm 2.1% 2.0% 2.0% 2.3% 
5% noise, 1mm 0.1% 0.1% 0.1% 0.001% 
0% noise, 3mm 4.3% 3.1% 2.9% 0.1% 

Table 1  Error measures of thresholding for different T1-weighted MR phantom images 
and tissue regions. 

In Table 1, we can see that as noise level goes up, the thresholds will shift a little, 

higher noise level needs larger smoothing kernel size. And if the noise level goes even 

higher, some thresholds will disappear due to the merging of different brain regions.  
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4.1.4   Accuracy analysis on 3D CT ankle images 

Threshold errors for CT images of cadaveric ankles are presented in Table 2. As 

mentioned previously, manual thresholding was used as the ground truth for thresholding. 

Here, three thresholds were identified for each CT image (see in Figure. 7). Table 2 

presents the quantitative error measures of thresholding for the CT images of two ankle 

specimens. 

Data description 
Error rate 

1st threshold 2nd threshold 3rd threshold 
Ankle 1 0.1% 1.9% 0.7% 
Ankle 2 0.2% 1.9% 0.8% 

Table 2  Error measures of thresholding for T images of two ankle specimens. 

4.1.5   Reproducibility analysis of 3D CT ankle image sets 

For reproducibility analysis, we analyze the fractional volume of different tissue 

regions as computed by applying the proposed thresholding methods on CT images 

received by different scans. Table 3 shows these fractional volumes of different tissues in 

different scans. As shown in the table, varieties in thresholded tissue volumes vary 

minimally in different scans showing a high multi-scan reproducibility of the method. 

 Image Dataset 1 Image Dataset 2 
 Bones Tissue Fat/Skin Bones Tissue Fat/Skin 

Data 1 21.1% 41.6% 37.3% 20.4% 44.0% 35.6% 
Data 2 20.3% 41.8% 37.9% 20.5% 43.7% 35.8% 
Data 3 20.2% 41.3% 38.5% 20.4% 44.2% 35.4% 
Mean 20.5% 41.6% 37.9% 20.4% 44.0% 35.6% 

Std. Dev. 0.45% 0.23% 0.57% 0.07% 0.24% 0.18% 

Table 3  Preliminary results of reproducibility analysis using MDCT repeat scans of a 
cadaveric ankle specimen. 
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4.2   Discussion 

A new method has been developed for simultaneously computing optimum values 

for thresholds and gradient parameters for different object/tissue interfaces. The method 

has been applied on several 2D and 3D medical image data sets and it has successfully 

determined both thresholds and gradients for different tissue interfaces even when some 

of the thresholds are almost impossible to locate in their histograms. Accuracy and 

reproducibility of the method have been evaluated using both MRI brain phantoms and 

real MDCT images of cadaveric ankles each scanned thrice and the preliminary results 

are very promising. 
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